Turbulent Flow Heat Transfer through a Circular Tube with Novel Hybrid Grooved Tape Inserts: Thermohydraulic Analysis and Prediction by Applying Machine Learning Model

نویسندگان

چکیده

The present experimental work is performed to investigate the convection heat transfer (HT), pressure drop (PD), irreversibility, exergy efficiency and thermal performance for turbulent flow inside a uniformly heated circular channel fitted with novel geometry of hybrid tape. Air taken as working fluid Reynolds number varied from 10,000 80,000. Hybrid tape made up combination grooved spring wavy results obtained show significantly better over individual tapes. A correlation has been developed predicting friction factor (f) Nusselt (Nu) this investigation can be used in designing exchangers. This paper also presented statistical analysis by developing an artificial neural network (ANN)-based machine learning (ML) model. model trained based on features data, which provide estimation output user-defined input parameters. evaluated have accuracy 98.00% unknown test data. These models will help researchers enhancement-based experiments understand predict output. As result, time cost reduce.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ...

متن کامل

Enhancements Of Heat Transfer Nanofluid Flow In Circular Pipe With Twisted Tape Inserts: Review

Heat transfer improvement in circular pipe by using nanofluid and twisted tape is presented in this review paper. Experimental and numerical studies are incorporated involving both the range of turbulent and laminar flow. Effect of type and volume fraction of nanofluid on performance of heat transfer was referred along with the length and twist ratio of the tape through the pipe on heat transfe...

متن کامل

Experimental Investigations in a Circular Tube to Enhance Turbulent Heat Transfer Using Mesh Inserts

The present work shows the results obtained from experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22mm, 18mm, 14mm and 10mm for varying distance between the screens of 50mm, 100mm, 150mm and 200mm in the porosity range of 99.73 to 99....

متن کامل

Numerical Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube Fitted with V-Cut Twisted Tape Inserts

Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulat...

متن کامل

Convective Heat Transfer of Oil Based Nanofluid Flow Inside a Circular Tube

Abstract   An empirical investigation was carried out to study convective heat transfer of nanofluid flow inside an inclined copper tube under uniform heat flux condition. Required data are acquired for laminar and hydrodynamically fully developed flow inside round tube. The stable CuO-base oil nanofluid with different nanoparticle weight fractions of 0.5%, 1% and 2% was produced by means of ul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2021

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su13063068